Algorithms & Methods Deep Dive

This document provides detailed mathematical and algorithmic foundations underlying Lavoisier’s high-performance mass spectrometry analysis capabilities.

Table of Contents

  1. Algorithms & Methods Deep Dive
    1. Spectral Processing Algorithms
      1. Peak Detection using Continuous Wavelet Transform
        1. Mathematical Foundation
        2. Implementation Details
        3. Ridge Line Extraction Algorithm
      2. Adaptive Baseline Correction
        1. Asymmetric Least Squares (AsLS) Method
        2. Implementation
    2. Mass Spectral Matching Algorithms
      1. Spectral Similarity Scoring
        1. Dot Product Similarity
        2. Enhanced Weighted Similarity
        3. Implementation
      2. Multi-Database Fusion Algorithm
        1. Bayesian Evidence Combination
        2. Implementation
    3. Machine Learning Algorithms
      1. Deep Learning for MS/MS Prediction
        1. Transformer Architecture for Spectral Prediction
        2. Implementation
      2. Continuous Learning with Knowledge Distillation
        1. Knowledge Distillation Loss Function
        2. Implementation
    4. Optimization Algorithms
      1. Adaptive Parameter Optimization
        1. Bayesian Optimization for Hyperparameter Tuning
        2. Implementation
      2. Memory-Efficient Processing
        1. Streaming Algorithms for Large Datasets
        2. Online Statistics Calculation
        3. Implementation
    5. Quality Control Algorithms
      1. Statistical Process Control
        1. Control Chart Implementation
        2. Implementation

Spectral Processing Algorithms

Peak Detection using Continuous Wavelet Transform

Lavoisier employs an advanced peak detection algorithm based on continuous wavelet transform (CWT) that significantly outperforms traditional methods in noisy spectral environments.

Mathematical Foundation

The CWT of a signal $f(t)$ is defined as:

\[CWT_f(a,b) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} f(t) \psi^*\left(\frac{t-b}{a}\right) dt\]

Where:

  • $a$ is the scale parameter (inversely related to frequency)
  • $b$ is the translation parameter (time localization)
  • $\psi(t)$ is the mother wavelet
  • $\psi^*(t)$ is the complex conjugate of the mother wavelet

Implementation Details

def continuous_wavelet_peak_detection(spectrum, scales, wavelet='mexh'):
    """
    Advanced peak detection using continuous wavelet transform
    
    Args:
        spectrum: Input spectral data
        scales: Array of scales for wavelet analysis
        wavelet: Mother wavelet type ('mexh', 'morl', 'cgau8')
    
    Returns:
        detected_peaks: Peak positions with confidence scores
    """
    # Compute CWT coefficients
    coefficients = signal.cwt(spectrum, signal.wavelets.mexh, scales)
    
    # Ridge line extraction using dynamic programming
    ridges = _extract_ridge_lines(coefficients, scales)
    
    # Peak validation using multi-scale consistency
    validated_peaks = _validate_peaks_multiscale(ridges, coefficients)
    
    # Confidence scoring based on ridge strength and consistency
    confidence_scores = _calculate_peak_confidence(validated_peaks, coefficients)
    
    return PeakDetectionResult(
        peak_positions=validated_peaks,
        confidence_scores=confidence_scores,
        wavelet_coefficients=coefficients
    )

Ridge Line Extraction Algorithm

The ridge line extraction uses dynamic programming to find optimal paths through the wavelet coefficient matrix:

\[R(i,j) = \max_{k \in [j-w, j+w]} \{R(i-1,k) + |CWT(i,j)|\}\]

Where:

  • $R(i,j)$ is the ridge score at scale $i$ and position $j$
  • $w$ is the allowed deviation window
  • $ CWT(i,j) $ is the absolute value of the wavelet coefficient

Adaptive Baseline Correction

Asymmetric Least Squares (AsLS) Method

Lavoisier implements an enhanced version of the AsLS algorithm for robust baseline correction:

\[\min_z \sum_{i=1}^n w_i(y_i - z_i)^2 + \lambda \sum_{i=2}^{n-1}(\Delta^2 z_i)^2\]

Subject to: $w_i = p$ if $y_i > z_i$, $w_i = 1-p$ if $y_i \leq z_i$

Where:

  • $y_i$ are the observed intensities
  • $z_i$ are the baseline estimates
  • $\lambda$ is the smoothness parameter
  • $p$ is the asymmetry parameter
  • $\Delta^2$ is the second-order difference operator

Implementation

class AdaptiveBaselineCorrector:
    def __init__(self, lambda_=1e6, p=0.01, max_iterations=50):
        self.lambda_ = lambda_
        self.p = p
        self.max_iterations = max_iterations
    
    def correct_baseline(self, spectrum):
        """
        Asymmetric least squares baseline correction with adaptive parameters
        """
        n = len(spectrum)
        
        # Initialize weights
        w = np.ones(n)
        
        # Create difference matrix
        D = sparse.diags([1, -2, 1], [0, 1, 2], shape=(n-2, n))
        W = sparse.diags(w, format='csc')
        
        for iteration in range(self.max_iterations):
            # Solve weighted least squares problem
            A = W + self.lambda_ * D.T @ D
            baseline = sparse.linalg.spsolve(A, w * spectrum)
            
            # Update weights based on residuals
            residuals = spectrum - baseline
            w_new = np.where(residuals > 0, self.p, 1 - self.p)
            
            # Check convergence
            if np.allclose(w, w_new, rtol=1e-6):
                break
                
            w = w_new
            W = sparse.diags(w, format='csc')
        
        return BaselineCorrectionResult(
            corrected_spectrum=spectrum - baseline,
            baseline=baseline,
            iterations=iteration + 1
        )

Mass Spectral Matching Algorithms

Spectral Similarity Scoring

Dot Product Similarity

The fundamental similarity metric used in spectral matching:

\[\text{Similarity}(A, B) = \frac{\sum_{i} I_A(m_i) \cdot I_B(m_i)}{\sqrt{\sum_{i} I_A(m_i)^2} \cdot \sqrt{\sum_{i} I_B(m_i)^2}}\]

Where $I_A(m_i)$ and $I_B(m_i)$ are the intensities at mass $m_i$ for spectra A and B.

Enhanced Weighted Similarity

Lavoisier implements an enhanced similarity metric that accounts for peak intensity, mass accuracy, and biological relevance:

\[\text{Enhanced Similarity} = \alpha \cdot S_{dot} + \beta \cdot S_{mass} + \gamma \cdot S_{bio}\]

Where:

  • $S_{dot}$ is the normalized dot product similarity
  • $S_{mass}$ is the mass accuracy component
  • $S_{bio}$ is the biological relevance weight
  • $\alpha + \beta + \gamma = 1$

Implementation

class EnhancedSpectralMatcher:
    def __init__(self, mass_tolerance=0.01, intensity_threshold=0.05):
        self.mass_tolerance = mass_tolerance
        self.intensity_threshold = intensity_threshold
        self.biological_weights = self._load_biological_weights()
    
    def calculate_similarity(self, query_spectrum, library_spectrum):
        """
        Calculate enhanced spectral similarity with multiple scoring components
        """
        # Normalize spectra
        query_norm = self._normalize_spectrum(query_spectrum)
        library_norm = self._normalize_spectrum(library_spectrum)
        
        # Align peaks within mass tolerance
        aligned_peaks = self._align_peaks(query_norm, library_norm)
        
        # Calculate dot product similarity
        dot_similarity = self._calculate_dot_product(aligned_peaks)
        
        # Calculate mass accuracy component
        mass_accuracy = self._calculate_mass_accuracy(aligned_peaks)
        
        # Calculate biological relevance
        biological_relevance = self._calculate_biological_relevance(
            aligned_peaks, self.biological_weights
        )
        
        # Combine scores with adaptive weights
        weights = self._adaptive_weight_selection(query_spectrum, library_spectrum)
        
        enhanced_similarity = (
            weights['dot'] * dot_similarity +
            weights['mass'] * mass_accuracy +
            weights['bio'] * biological_relevance
        )
        
        return SimilarityResult(
            total_score=enhanced_similarity,
            component_scores={
                'dot_product': dot_similarity,
                'mass_accuracy': mass_accuracy,
                'biological_relevance': biological_relevance
            },
            weights=weights,
            aligned_peaks=aligned_peaks
        )

Multi-Database Fusion Algorithm

Bayesian Evidence Combination

Lavoisier combines evidence from multiple databases using Bayesian inference:

\[P(compound|evidence) = \frac{P(evidence|compound) \cdot P(compound)}{P(evidence)}\]

For multiple evidence sources:

\[P(compound|E_1, E_2, ..., E_n) \propto P(compound) \prod_{i=1}^n P(E_i|compound)\]

Implementation

class BayesianDatabaseFusion:
    def __init__(self):
        self.database_weights = self._initialize_database_weights()
        self.compound_priors = self._load_compound_priors()
    
    def fuse_database_results(self, database_results):
        """
        Combine results from multiple databases using Bayesian inference
        """
        # Extract unique compounds across all databases
        all_compounds = self._extract_unique_compounds(database_results)
        
        posterior_scores = {}
        
        for compound in all_compounds:
            # Get prior probability
            prior = self.compound_priors.get(compound.id, 1e-6)
            
            # Calculate likelihood for each database
            likelihood_product = 1.0
            
            for db_name, results in database_results.items():
                if compound.id in results:
                    # Database-specific likelihood
                    likelihood = self._calculate_likelihood(
                        results[compound.id], db_name
                    )
                    likelihood_product *= likelihood
                else:
                    # Penalty for absence in database
                    likelihood_product *= 0.1
            
            # Calculate posterior probability (unnormalized)
            posterior_scores[compound.id] = prior * likelihood_product
        
        # Normalize probabilities
        total_score = sum(posterior_scores.values())
        normalized_scores = {
            comp_id: score / total_score 
            for comp_id, score in posterior_scores.items()
        }
        
        return FusedDatabaseResult(
            compound_probabilities=normalized_scores,
            evidence_summary=self._summarize_evidence(database_results),
            confidence_intervals=self._calculate_confidence_intervals(normalized_scores)
        )

Machine Learning Algorithms

Deep Learning for MS/MS Prediction

Transformer Architecture for Spectral Prediction

Lavoisier employs a specialized transformer architecture for predicting MS/MS spectra from molecular structures:

\[\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V\]

Where molecular graphs are embedded using graph neural networks before transformer processing.

Implementation

class SpectralTransformer(nn.Module):
    def __init__(self, d_model=512, nhead=8, num_layers=6):
        super().__init__()
        self.molecular_encoder = MolecularGraphEncoder(d_model)
        self.positional_encoding = PositionalEncoding(d_model)
        
        encoder_layer = nn.TransformerEncoderLayer(
            d_model=d_model,
            nhead=nhead,
            dim_feedforward=2048,
            dropout=0.1
        )
        self.transformer = nn.TransformerEncoder(encoder_layer, num_layers)
        self.spectrum_decoder = SpectrumDecoder(d_model, max_mz=2000)
    
    def forward(self, molecular_graph):
        # Encode molecular structure
        mol_embedding = self.molecular_encoder(molecular_graph)
        
        # Add positional encoding
        mol_embedding = self.positional_encoding(mol_embedding)
        
        # Transform through attention layers
        transformed = self.transformer(mol_embedding)
        
        # Decode to spectrum
        predicted_spectrum = self.spectrum_decoder(transformed)
        
        return predicted_spectrum

class MolecularGraphEncoder(nn.Module):
    def __init__(self, d_model):
        super().__init__()
        self.atom_embedding = nn.Embedding(120, d_model)  # 120 atom types
        self.bond_embedding = nn.Embedding(12, d_model)   # 12 bond types
        self.graph_conv_layers = nn.ModuleList([
            GraphConvLayer(d_model) for _ in range(4)
        ])
    
    def forward(self, molecular_graph):
        # Embed atoms and bonds
        atom_features = self.atom_embedding(molecular_graph.atoms)
        bond_features = self.bond_embedding(molecular_graph.bonds)
        
        # Graph convolution layers
        for layer in self.graph_conv_layers:
            atom_features = layer(atom_features, bond_features, molecular_graph.edges)
        
        return atom_features

Continuous Learning with Knowledge Distillation

Knowledge Distillation Loss Function

\[\mathcal{L}_{KD} = \alpha \mathcal{L}_{CE}(y, \sigma(z_s)) + (1-\alpha) \mathcal{L}_{KL}(\sigma(z_t/T), \sigma(z_s/T))\]

Where:

  • $\mathcal{L}_{CE}$ is the cross-entropy loss with true labels
  • $\mathcal{L}_{KL}$ is the KL divergence between teacher and student
  • $T$ is the temperature parameter
  • $\alpha$ balances the losses

Implementation

class ContinuousLearningEngine:
    def __init__(self, teacher_model, student_model, temperature=4.0, alpha=0.3):
        self.teacher_model = teacher_model
        self.student_model = student_model
        self.temperature = temperature
        self.alpha = alpha
        self.experience_buffer = ExperienceBuffer(capacity=100000)
    
    def distillation_loss(self, student_logits, teacher_logits, true_labels):
        """
        Calculate knowledge distillation loss combining hard and soft targets
        """
        # Soft targets from teacher
        teacher_probs = F.softmax(teacher_logits / self.temperature, dim=1)
        student_log_probs = F.log_softmax(student_logits / self.temperature, dim=1)
        
        # KL divergence loss
        kl_loss = F.kl_div(student_log_probs, teacher_probs, reduction='batchmean')
        kl_loss *= (self.temperature ** 2)
        
        # Hard target loss
        ce_loss = F.cross_entropy(student_logits, true_labels)
        
        # Combined loss
        total_loss = self.alpha * ce_loss + (1 - self.alpha) * kl_loss
        
        return total_loss, {'ce_loss': ce_loss.item(), 'kl_loss': kl_loss.item()}
    
    def incremental_update(self, new_data):
        """
        Perform incremental model update with new experience
        """
        # Add new experience to buffer
        self.experience_buffer.add(new_data)
        
        # Sample balanced batch for training
        batch = self.experience_buffer.sample_balanced_batch(batch_size=128)
        
        # Generate teacher predictions
        with torch.no_grad():
            teacher_logits = self.teacher_model(batch['inputs'])
        
        # Train student model
        self.student_model.train()
        student_logits = self.student_model(batch['inputs'])
        
        loss, loss_components = self.distillation_loss(
            student_logits, teacher_logits, batch['labels']
        )
        
        # Backward pass and optimization
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()
        
        return loss_components

Optimization Algorithms

Adaptive Parameter Optimization

Bayesian Optimization for Hyperparameter Tuning

Lavoisier uses Bayesian optimization to automatically tune analysis parameters:

\[\alpha(x) = \mathbb{E}[I(x)] = \mathbb{E}[\max(f(x) - f(x^+), 0)]\]

Where $I(x)$ is the improvement function and $f(x^+)$ is the current best value.

Implementation

class BayesianParameterOptimizer:
    def __init__(self, parameter_space, acquisition_function='ei'):
        self.parameter_space = parameter_space
        self.acquisition_function = acquisition_function
        self.gp_model = GaussianProcessRegressor(
            kernel=Matern(nu=2.5),
            alpha=1e-6,
            normalize_y=True
        )
        self.evaluated_points = []
        self.evaluated_scores = []
    
    def optimize_parameters(self, objective_function, n_iterations=50):
        """
        Optimize analysis parameters using Bayesian optimization
        """
        # Initialize with random samples
        for _ in range(5):
            params = self._sample_random_params()
            score = objective_function(params)
            self.evaluated_points.append(params)
            self.evaluated_scores.append(score)
        
        for iteration in range(n_iterations):
            # Fit Gaussian process to observed data
            X = np.array(self.evaluated_points)
            y = np.array(self.evaluated_scores)
            self.gp_model.fit(X, y)
            
            # Find next point using acquisition function
            next_params = self._optimize_acquisition()
            
            # Evaluate objective function
            score = objective_function(next_params)
            
            # Update observations
            self.evaluated_points.append(next_params)
            self.evaluated_scores.append(score)
            
            # Early stopping if converged
            if self._check_convergence():
                break
        
        # Return best parameters
        best_idx = np.argmax(self.evaluated_scores)
        return OptimizationResult(
            best_parameters=self.evaluated_points[best_idx],
            best_score=self.evaluated_scores[best_idx],
            convergence_iteration=iteration,
            optimization_history=list(zip(self.evaluated_points, self.evaluated_scores))
        )
    
    def _expected_improvement(self, X):
        """
        Calculate expected improvement acquisition function
        """
        mu, sigma = self.gp_model.predict(X, return_std=True)
        mu_best = np.max(self.evaluated_scores)
        
        with np.errstate(divide='warn'):
            improvement = mu - mu_best
            Z = improvement / sigma
            ei = improvement * norm.cdf(Z) + sigma * norm.pdf(Z)
            ei[sigma == 0.0] = 0.0
        
        return ei

Memory-Efficient Processing

Streaming Algorithms for Large Datasets

For datasets that exceed available memory, Lavoisier implements streaming algorithms:

Online Statistics Calculation

\[\mu_n = \mu_{n-1} + \frac{x_n - \mu_{n-1}}{n}\] \[\sigma_n^2 = \frac{(n-1)\sigma_{n-1}^2 + (x_n - \mu_{n-1})(x_n - \mu_n)}{n}\]

Implementation

class StreamingStatistics:
    def __init__(self):
        self.n = 0
        self.mean = 0.0
        self.variance = 0.0
        self.min_val = float('inf')
        self.max_val = float('-inf')
    
    def update(self, value):
        """
        Update statistics with new value using Welford's online algorithm
        """
        self.n += 1
        delta = value - self.mean
        self.mean += delta / self.n
        delta2 = value - self.mean
        self.variance += delta * delta2
        
        self.min_val = min(self.min_val, value)
        self.max_val = max(self.max_val, value)
    
    def get_statistics(self):
        """
        Return current statistics
        """
        if self.n < 2:
            variance = 0.0
        else:
            variance = self.variance / (self.n - 1)
        
        return {
            'count': self.n,
            'mean': self.mean,
            'variance': variance,
            'std': np.sqrt(variance),
            'min': self.min_val,
            'max': self.max_val
        }

class StreamingSpectrumProcessor:
    def __init__(self, chunk_size=1000):
        self.chunk_size = chunk_size
        self.stats = StreamingStatistics()
        self.peak_detector = StreamingPeakDetector()
    
    def process_stream(self, spectrum_stream):
        """
        Process spectral data stream with constant memory usage
        """
        results = []
        
        for chunk in self._chunk_stream(spectrum_stream, self.chunk_size):
            # Process chunk
            chunk_results = self._process_chunk(chunk)
            
            # Update global statistics
            for spectrum in chunk:
                self.stats.update(spectrum.total_intensity)
            
            # Append results
            results.extend(chunk_results)
            
            # Optional: yield intermediate results for real-time processing
            yield chunk_results
        
        return StreamingResult(
            peak_detections=results,
            global_statistics=self.stats.get_statistics(),
            processing_metadata=self._get_processing_metadata()
        )

Quality Control Algorithms

Statistical Process Control

Control Chart Implementation

Lavoisier implements statistical process control for monitoring analysis quality:

\(UCL = \mu + 3\sigma\) \(LCL = \mu - 3\sigma\)

Where $\mu$ and $\sigma$ are estimated from historical data.

Implementation

class QualityControlMonitor:
    def __init__(self, control_limits_factor=3.0, min_history=30):
        self.control_limits_factor = control_limits_factor
        self.min_history = min_history
        self.historical_data = deque(maxlen=1000)
        self.control_statistics = {}
    
    def monitor_analysis_quality(self, analysis_result):
        """
        Monitor analysis quality using statistical process control
        """
        # Extract quality metrics
        quality_metrics = self._extract_quality_metrics(analysis_result)
        
        # Update historical data
        self.historical_data.append(quality_metrics)
        
        # Calculate control limits if sufficient history
        if len(self.historical_data) >= self.min_history:
            self._update_control_limits()
            
            # Check for out-of-control conditions
            control_status = self._check_control_status(quality_metrics)
            
            return QualityControlResult(
                metrics=quality_metrics,
                control_status=control_status,
                control_limits=self.control_statistics,
                recommendations=self._generate_recommendations(control_status)
            )
        else:
            return QualityControlResult(
                metrics=quality_metrics,
                control_status='insufficient_history',
                control_limits=None,
                recommendations=['Collecting baseline data for control limits']
            )
    
    def _update_control_limits(self):
        """
        Update control limits based on historical data
        """
        historical_array = np.array([
            [metrics[key] for key in metrics.keys()]
            for metrics in self.historical_data
        ])
        
        means = np.mean(historical_array, axis=0)
        stds = np.std(historical_array, axis=0, ddof=1)
        
        metric_names = list(self.historical_data[0].keys())
        
        for i, metric_name in enumerate(metric_names):
            self.control_statistics[metric_name] = {
                'mean': means[i],
                'std': stds[i],
                'ucl': means[i] + self.control_limits_factor * stds[i],
                'lcl': means[i] - self.control_limits_factor * stds[i]
            }

This comprehensive algorithms and methods documentation provides the mathematical and computational foundations that enable Lavoisier’s exceptional performance in mass spectrometry analysis. The combination of advanced signal processing, machine learning, and optimization techniques creates a robust and efficient analytical platform.


Copyright © 2024 Lavoisier Project. Distributed under the MIT License.